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BEHAVIOR OF A PULSATING RIGID BODY

IN A VISCOUS FLUID IN THE PRESENCE OF GRAVITY

UDC 532.516; 532.582V. L. Sennitskii

The paper considers the motion of a rigid sphere due to specified pulsations of the sphere and gravity
in a viscous fluid which is at rest away from the sphere.

Experimental and theoretical studies [1–8] demonstrated that vibrations of a fluid with a rigid body can lead
to qualitative changes in the behavior of the body.

The problem of the motion of a pulsating rigid sphere in an unbounded viscous incompressible fluid which
vibrates at infinity in the absence of gravity was formulated and solved in [7]. In the present paper, we consider
the motion of a pulsating rigid sphere under gravity in an unbounded viscous incompressible fluid which is at rest
at infinity. It is found that behavior of pulsating spheres can be qualitatively different from the behavior of spheres
of constant volume, and a pulsating sphere can behave paradoxically.

1. A compressible rigid sphere is placed in an unbounded viscous incompressible fluid. The fluid is at rest
at infinity relative to the inertial Cartesian coordinate system X, Y , Z. The sphere radius change periodically in a
prescribed manner with period T in time t. The distribution of the sphere material is symmetric about its center
(the center of inertia coincides with the center of the sphere). There is a constant field of gravity; the acceleration
of gravity is g = (0, 0,−g), where g > 0. The fluid flow does not depend on the initial conditions. The position of
the sphere is characterized by the radius-vector S of its center. The problem is to find how S depends on t.

The present formulation of the problem corresponds to the following: a closed container is filled with a
fluid and contains a body, and deformations of the container cause the body to pulsate (the body volume changes
periodically with time) (see [7]). We note, however, that the forces acting inside the body can also cause its
pulsations. In this case, the body moves in the fluid which experiences vibration effects exerted by the body itself.

We consider the fluid flow and the motion of the sphere relative to the Cartesian coordinate system X1 =
X − SX , X2 = Y − SY , X3 = Z − SZ (SX , SY , and SZ are, respectively, the X, Y , and Z components of the
vector S).

We assume that τ = t/T , A = A0(1 + æa) is the radius of the sphere [A0 (A0 > 0) is a constant, æ (æ < 1)

is the maximum value of |A− A0|/A0, and a = Real
∞∑
m=1

ame2mπiτ (am are constants)], x1 = X1/A0, x2 = X2/A0,

x3 = X3/A0, r =
√
x2

1 + x2
2 + x2

3, ρ is the density of the fluid, m is the mass of the sphere, µ = 3m/(4πA3
0ρ), (s)

is the surface of the sphere [the equation of (s) is r = 1 + æa], n is the unit outward normal to (s), α = αk =
−T 2g/A0 [k = (0, 0, 1)], V is the fluid velocity, v = TV /A0, P is the fluid pressure, p = T 2P/(ρA2

0), W = dS/dt,
w = TW /A0, ν is the kinematic viscosity of the fluid, Re = A2

0/(νT ) is the Reynolds number, P is the stress tensor

for the fluid, ℘ = T 2P/(ρA2
0), F is the force exerted by the fluid on the body, and f = T 2F /(ρA4

0) =
∫∫
(s)

℘ · n ds.

We write the equation of motion for the center of inertia of the sphere, the Navier–Stokes and continuity
equations, and the conditions that must be satisfied at (s) and for r →∞:

f − 4π
3
µ
(dw
dτ

+α
)

= 0,
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∂v

∂τ
+ (v · ∇)v = −∇p+

1
Re

∆v − dw

dτ
−α, ∇ · v = 0;

(1.1)

v = æ
da

dτ
n on (s), v ∼ −w as r →∞. (1.2)

2. We consider problem (1.1), (1.2) for small (compared to unity) values of Re.
We assume that

v ∼ v(0) + Rev(1), p ∼ 1
Re

p(0) + p(1), w ∼ w(0) + Rew(1) (2.1)

as Re→ 0.
According to (1.1), (1.2), and (2.1), as the Lth approximation (L = 0, 1), we have

f (L) − L
4π
3
µ
(dw(0)

dτ
+α

)
= 0,

∇p(L) −∆v(L) + L
[∂v(0)

∂τ
+ (v(0) · ∇)v(0) +

dw(0)

dτ
+α

]
= 0, (2.2)

∇ · v(L) = 0;

v(L) = (1− L)æ
da

dτ
n for r = 1 + æa, v(L) ∼ −w(L) as r →∞. (2.3)

Here

f (L) =
∫∫
(s)

℘(L) · n ds, (2.4)

where ℘(L) is ℘ for v = v(L), p = p(L), and Re = 1 [℘ ∼ (1/Re)℘(0) + ℘(1) and f ∼ (1/Re)f (0) + f (1) as Re→ 0)].
Let L = 0. To a zeroth approximation, displacement of the sphere with nonzero velocity relative to the fluid

at infinity cannot occur because of gravity; the center of inertia of the sphere is at rest relative to the coordinate
system X, Y , Z, and the fluid flow is symmetric about the origin of the coordinates x1, x2, x3. Problem (2.2)–(2.4)
has the solution

v(0) = æ
da

dτ
(1 + æa)2r−3r, p(0) = c(0);

f (0) = 0; (2.5)

w(0) = 0. (2.6)

Here r = (x1, x2, x3) and c(0) is a function of τ .
Let L = 1. Problem (2.2)–(2.4) has the solution

v(1)r = w(1){−1 + (1/2)(1 + æa)[3− (1 + æa)2r−2]r−1} cos θ,

v(1)θ = w(1){1− (1/4)(1 + æa)[3 + (1 + æa)2r−2]r−1} sin θ, v(1)ϕ = 0,

p(1) =
[
− αr +

3
2
w(1)(1 + æa)r−2

]
cos θ + æ

d[(da/dτ)(1 + æa)2]
dτ

r−1 − 1
2

æ2
(da
dτ

)2

(1 + æa)4r−4 + c(1);

f (1) = (4π/3)(1 + æa)3α− 6π(1 + æa)w(1); (2.7)

w(1) = (2/9)[(1 + æa)2 − µ(1 + æa)−1]α. (2.8)

Here θ is the angle between the vectors (0, 0, 1) and (x1, x2, x3), ϕ is the angle between the vectors (1, 0, 0) and
(x1, x2, 0) (r, θ, and ϕ are spherical coordinates), v(1)r, v(1)θ, and v(1)ϕ are the r, θ, and ϕ components of the vector
v(1), respectively, and c(1) is a function of τ .

3. Using (2.6) and (2.8), we obtain

W = (2/9)[µ(1 + æa)−1 − (1 + æa)2]A2
0g/ν. (3.1)
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At æ = 0 for a sphere of constant volume, (3.1) becomes

W = W0k, (3.2)

where W0 = (2/9)(1− µ)A2
0g/ν. We note that (3.2) coincides with the Stokes formula for the velocity at which the

sphere of constant volume moves under gravity in a viscous fluid at small Reynolds numbers [9, 10].
From (3.1), it follows that

S = W̄ tk + S̃, (3.3)

where

W̄ = (2/9)[〈(1 + æa)2〉 − µ〈(1 + æa)−1〉]A2
0g/ν

(
〈· · ·〉 =

τ+1∫
τ

· · · dτ
)
,

S̃ = S0 + Real
∞∑
m=1

Sme2mπiτk

(S0 and Sm are constants). Relation (3.3) approximately defines the dependence of S on t.
According to (3.3), the sphere moves along the Z axis, and its motion consists of vibrations and displacement

with constant velocity:

W̄ = W̄k. (3.4)

Using (3.2) and (3.4), we compare the behavior of the pulsating sphere with the behavior of the sphere of
constant volume.

A. Let µ < 1. Then, W0 > 0 and the sphere of constant volume floats; the pulsating sphere can float
faster than the sphere of constant volume (at W̄ > W0), float more slowly than the sphere of constant volume (at
0 < W̄ < W0), neither float nor sink (at W̄ = 0), or sink (at W̄ < 0).

B. Let µ = 1. Then, W0 = 0 and the sphere of constant volume is at rest; the pulsating sphere can float (at
W̄ > 0) or sink (at W̄ < 0).

C. Let µ > 1. Then, W0 < 0 and the sphere of constant volume sinks; the pulsating sphere can sink faster
than the sphere of constant volume (at W̄ < W0), sink more slowly than it (at W0 < W̄ < 0), neither sink nor float
(at W̄ = 0), or float (at W̄ > 0).

D. Let µ S 1. Then, W0 T 0 and the pulsating sphere can move in the same manner as the sphere of

constant volume (at W̄ = W0).
4. We consider the force exertion by the fluid on the sphere.
In accordance with (2.5) and (2.7), we have

F = FA + FC, (4.1)

where FA = FAk = −(4π/3)A3ρg is the buoyancy Archimedean force and FC = −6πρνAW is the Stokes drag
force.

From (3.1) and (4.1), it follows that

〈F 〉 = 〈FA〉 − 6πρνA0W̄ + F vibr, (4.2)

where

F vibr = −6πρνA0æ〈aW̃ 〉 = (4π/3)æ[2æ〈a2〉+ æ2〈a3〉 − µ〈a(1 + æa)−1〉]A3
0ρg (W̃ = W − W̄ ). (4.3)

We write 〈FA〉 in the form

〈FA〉 = FA0 − (4π/3)æ2(3〈a2〉+ æ〈a3〉)A3
0ρg, (4.4)

where FA0 = FA0k = −(4π/3)A3
0ρg. According to (4.4), 〈FA〉 > FA0. In particular, this relation indicates that

for µ < 1, if the sphere of constant volume floats, all the more, the pulsating sphere should float. However, as
noted above, at µ < 1, the pulsating sphere can, for instance, sink. Thus, the pulsating sphere in the fluid in the
presence of the body force can behave unusually, paradoxically. The reason for such behavior is as follows. Because
of periodical changes in volume and the presence of gravity, the sphere vibrates along the vertical axis relative to
the fluid at infinity, and the simultaneous occurrence of such vibrations and changes in the volume of the sphere
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results in the force F vibr exerted by the fluid on the sphere [se, (4.1)–(4.3)]. In accordance with (4.3), F vibr is
independent of t, the direction of F vibr coincides with the direction of g and is opposite to the direction of 〈FA〉.
The action of the force F vibr leads to the effect of “the sphere of constant volume floats–the pulsating sphere sinks”
and other types of behavior of the pulsating sphere.

5. Let the values of æ be small in comparison to unity.
From (3.4), it follows that as æ→ 0,

W̄ ∼ (2/9)[(µ− 1)(1 + æ2〈a2〉)− µæ3〈a3〉]A2
0g/ν. (5.1)

The dependence of a on τ can be specified in such a manner that 〈a3〉 is positive, negative, or zero. For
instance, 〈a3〉 ≷ 0 if a = (λ/5)(4 cos 2πτ + cos 4πτ) (λ = ±1) and 〈a3〉 = 0 if a = λ cos 2πτ .

Using (3.2) and (5.1), one can see that all the types of behavior of the pulsating sphere noted above are
possible. In particular, according to (3.2) and (5.1), the effect “the sphere of constant volume floats–the pulsating
sphere sinks” occurs for 1 + æ3〈a3〉 < µ < 1.

6. The results obtained show that in the presence of body force, even implementation of body pulsations is
enough to produce qualitative changes in its behavior.

As noted above (see, for example, [11, 12]), vibration effects on a fluid with inclusions can be used as a
method for controlling the inclusions. The results presented here demonstrate a new possibility of controlling
inclusions in a fluid by means of vibration.
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